If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-50x+9=0
a = 16; b = -50; c = +9;
Δ = b2-4ac
Δ = -502-4·16·9
Δ = 1924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1924}=\sqrt{4*481}=\sqrt{4}*\sqrt{481}=2\sqrt{481}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{481}}{2*16}=\frac{50-2\sqrt{481}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{481}}{2*16}=\frac{50+2\sqrt{481}}{32} $
| 21x^2+4x=7x | | 25+-50x+35x2+-10x3+x4=0 | | Y=-0.055x+1.65 | | 5g-20=-9g+20 | | 18x^2+24x=10 | | 10x-32=5x-27 | | (x/7)^5=32 | | 4(3y+2)=5(6y-1)=2(y-8)6(7y-4)+4y | | -9x+6-x=4 | | 2=x-(x*0.3) | | (-2x^2+7x)/(x-1)=0 | | 6(2=y)=3(3-y) | | 5(3x+2)=2(6x+11) | | 2(x+4)=9(x-3) | | 7y-3(y=6)=10 | | 3x=14=-35-4x | | (2x+1)(x-4)=x^-4x-6 | | (x-3)/2-(x-1)/5=2 | | 7x+5=-(-7x-3)+2 | | 6x-3(2x-4)=3(x-1) | | 4(x-2)+3(2x-4)=6(2x-3) | | 16x2-48x=-27 | | 13x-15=1512x+16 | | (5x+1)/(x-1)=8 | | 2x-1—3=3 | | x×x-11x-10=0 | | x^-11x-10=0 | | 1/3x+2=1/3-1 | | 12x+5=4x=37 | | 6(16-x)-9(15-2x)=18(x-3)+3 | | 0.5/50=x | | 6x10-7x4x103=2.4x10 |